三角形的内角和
(卢芳珍)
教学内容 :课本p85例5
教学要求:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、引出课题
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.课件出示:长方形内角和引出直角三角形内角和。
思考:所有的三角形的内角和都是180°吗?
以小组为单位,拿出准备好的三种三角形卡片,选择自己喜欢的方法进行验证。
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
二、重点点拨:
1、可以把三个内角拼成一个角,就只需测量一次了。
课件出示拼角方法。
2.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
3.学生动手,拿一个锐角三角形纸片试试看,拼的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
4.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
5.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
6.讨论交流:
a、你能画出一个有两个直角的三角形吗?说说原因!
b、可以画出一个有两个钝角的三角形吗?
c、一个三角形最多只能有()直角,或最多只能有
()钝角。最少有()锐角,最多有()个锐角。
7.出示教材85页做一做。让学生试做。
8.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
四、课堂小结。
五、知识拓展
求多边形的内角和。
六、布置作业
第二篇:三角形内角和教学设计《三角形内角和》教学设计
绥滨县第二中学:蒋海峰
课题:三角形内角和
教学目标
1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。
2、通过动手操作,找到规律,并能灵活运用。
3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。
难点:会应用这一规律进行计算。
关键:学生动手自己推导。
教具:课件学具:表格、三角板、三角形量角器
一、创设情境 揭示课题。
师:前面我们已经认识三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的两个好朋友却吵了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件)
师:到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题)
二、自主探究,合作交流。
师:什么是三角形的内角? 三角形有几个内角?
师:三条线段在围成三角形后,在三角形内形成了三个角,我们把三角形内的这三个角,分别叫做三角形的内角。
1、师拿出两个三角板,问:它们是什么三角形?
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
学生们能够很快求出每块三角尺的3个角的和都是180°
师:其他三角形的内角和也是180°吗?
2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们拿出准备好的三种(直角三角形、钝角三角形、锐角三角形),请同学们在小组内选出一种三角形先测量出每个角的度数,在算出它们的内角和,把结果填在表中。(附表)
(1)、小组合作。
(2)汇报结果。
问:你们发现了什么?
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。(只因为我们测量时会出现一些误差,所以测量出的结果不是很准确。)
3、验证推测:
师:那么,请同学们回忆一下,我们把180度的角叫什么角?现在请同学们动脑想一想,不用测量,能不能用其它的方法知道三角形的内角和是180度呢?请同学们先独立思考,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)、小组合作,讨论验证方法。
(2)汇报验证方法、结果。
……此处隐藏3460个字……三角形内角和的特点,在小组活动中,通量一量、拼一拼、折一折等进行猜想—验证数学的思想方法。学情分析:
1、学生已有的知识基础:
学生已具备了角的度量,角的分类,三角形的认识,三角形的简单分类。其中知道三角形内和是180度的学生有14占全班总人数的44.4%。
由此,我把自己的学习目标设定为,让学生自己动手发现不同类型的三角形的内角和都是180度这个知识点上。
还有少部分学生知道无论是大三角形还是小三角形,他们的内角和都等于180度。有三名学生知道多边形内角和公式。
2、学生已有生活经验和学习该内容的经验:
学生具备了一定的动手操作能力,和小组的合作交流能力。
3、学生学习该内容可能的困难:
在小组合作过程中,由于中年级的孩子年龄不大,所以在动手操作过程中有的学生动作较慢;学生三角形分类没有学过,对于三角形内角和都是180度的理解会有影响;少数学生角的测量时方法还有问题(前测发现的);学生固有思想对探索活动的阻碍。
4、学生学习的兴趣、学习方式和学习方法的分析:
学生自己动手发现三角形内角和为180度,对小组合作很感兴趣。主要是利用了独立探索、合作学习、交流等学习方法,符合学生兴趣和本次课的特点。
教学目标:
1.让学生亲自动手,通过量、剪、拼、推导等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作等探究活动引导学生产生疑问再寻求方法的过程培养学生客观严谨的学习态度。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:
如何得出真实正确的结论。
教学用具:
几何图形若干:长方形、正方形、直角三角形、锐角三角形、钝角三角形、课件一套。 教学过程:
一、旧知引入,渗透数学联系
1、认识内角
师: 我们已经学习了哪些平面图形?
师:关于长方形你都知道什么?
介绍内角:图形中相邻两边的夹角称为内角,长方形内角和是多少?
师: ( 出示一个三角形) 三角形有几个内角呢?
标出我们手中的三角形的内角。
同桌互查。
2、揭示课题:三角形内角和(板书)
今天我们就来研究三角形的内角和。
【设计意图:先从已学的一些平面图形引入, 引导学生认识内角, 并从长方形的内角和切入, 引出三角形的内角和的问题。这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系。
二 、自主探究,寻求规律
(一)独立探索
1、师:老师在每个同学的桌子上都放了很多不同的三角形,还有量角器等学习材料请同学们先独立思考采用什么方法,然后再亲手操作探索结论。
2、师巡视了解学生活动情况。
(二)小组交流
在小组中充分发表自己的看法,小结本组有几种方法推出结论,选出一位主发言人
(三)集体交流讨论
1、测量
展示几组测量数据:如内角和是180度的、不正好是180度的,由学生观察得出什么结论:三角形内角和180度左右。产生疑问:所用三角形内角和是一样的吗?如果是一样的是多少度呢?
2、折、撕、画转化平角=180度
疑问:折、撕、画都有误差,数据也不准确。师:老师在每个同学的桌子上都放了很多不同的三角形,
3、推导:长方形转化直角三角形内角和是180度
锐角三角形、钝角三角形转化直角三角形得出内角和是180度。
【设计意图:在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。首先, 学生用度量的方法探索三角形内角和, 初步得出 了三角形内角和是180°的结论, 并发现了直接度量的局限性。其次, 学生又创造性地与平角知识联系起来, 用“撕——拼”“、折——拼”等方法, 把三角形的三个内角转化成一个平角, 但也发现了问题, 由于提供的学具有长方形的, 课始又是从长方形四个内角的和是360°引入的, 又有学生利用长方形与三角形的关系推导直角三角形的内角和进而推导出锐角三角形和钝角三角形的内角和。在整个探索过程中, 引导学生积极思考并大胆质疑, 他们的创造性思维得到了充分发挥。】
三、综合应用,沟通知识联系
1、操作游戏
正方形纸对折成三角形再对折,每操作一次问内角和是多少。
【设计意图:进一步理解巩固任意三角形内角和都是180度。】
2、猜角游戏
给出两个角的度数猜第三个角。
【设计意图:进一步熟悉三角形内角和及应用。】
四、全课总结。
板书设计:三角形内角和
测
撕
折转化平角180度
画
推导:长方形转化直角三角形内角和是180度
锐角三角形、钝角三角形转化直角三角形得出内角和是180度。 学习效果评价设计
1、能运用自己的方法推导三角形内角和。
2、能运用学具进行探究。
3、在实践活动中能提出问题,进行讨论。
4、充分理解三角形内角和是180度,并能进行简单应用。
本次教学设计与以往或其他教学设计相比的特点 1、关注学生的元认知。从学生实际出发,在学生已有基础上进行教学。例如新课的导入由学生已学图形导入,认识了内角,进而提出了本课的主题,学生轻松的进入了新课。课始长方形的引入也为后面内角和的推导做了铺垫。
2、培养科学严谨的研究态度。在探究过程中引导学生不断产生疑问进而再深入研究,一般情况下,大多数老师到撕折拼成平角即得出结论。我觉得这种方法也有误差不能确定内角和就是180度,所以引导学生又有了更深次的认知,使学生本着科学的态度去研究问题,突破了知识本身。
默认推荐其他文章:三角形内角和教学设计
三角形的内角和教学设计
三角形的内角和教学设计
四年级三角形内角和教学设计
四年级数学《三角形的内角和》教学设计
文档为doc格式